Determining Factors of Strength — Part I

Reprinted from NSCA Journal 7(1).

Editor's Note: This is the first of two articles on determining factors of strength.

Question 1: Discuss the role played by the number and frequency of motor units firing. Describe how this can be improved through training.

Sude: The nervous system can vary the force (strength) of muscle contraction by varying the number of motor units recruited and by varying the firing rate of motor units. For example, a muscle composed of 500 motor units would have 500 gradation “steps” available to it. In addition, each motor unit (consisting of a motor nerve cell and the few hundred muscle fibers it innervates) can vary its force output over about a 10-fold range by varying its firing rate (e.g. from 10 to 50 impulses per second). For any set of conditions (e.g. contraction type, contraction velocity, muscle length), the force of contraction is maximal when all motor units have been recruited and all are firing at the optimal rate for force development. This is referred to as complete motor unit activation. Using electromyographic techniques in which the extent of motor unit activation is measured by recording the action potentials of muscle fibers of active motor units, it has been demonstrated that strength training increases the degree of motor unit activation achieved by voluntary effort (8, 12, 19, 25). This effect of training on the nervous system would account in part for the increases in strength that occur in the initial stages of a training program, despite no increase in muscle size (8, 19).

Tesch: Basically, the force output during the muscle contraction is regulated by the number of motor units being recruited and the firing frequency of those units. Thus, to increase force, more motor units have to be recruited and/or fired at a higher frequency. Low contraction forces can be attained by a few motor units firing at a submaximal frequency. As force increases, additional motor units are recruited and/or those already recruited increase their firing frequency. At forces of 50 percent of maximum, some motor units have reached their maximum frequency and thus their maximum tension. Accordingly, further increases in force can only be produced by recruitment of new motor units. It appears that the modulation of strength by these mechanisms (e.g. recruitment of motor units and increased firing frequency) differs from muscle to muscle. Consequently, in some muscles, all motor units are brought into action at fairly low contraction levels and a further increase in force is the result of increases in firing frequency. In other muscles, some motor units are not recruited unless the force demand is close to maximum voluntary force.

Numerous reports have shown that at the start of a strength training program muscle strength is rapidly increased. This is also consistent with practical experiences. This is because more motor units are brought into action. Once all motor units are recruited at maximum firing frequency, the gain in muscle strength will be much less.

Further improvement is then largely attributed to increased synthesis of contractile material — muscle mass. Although the time course, loads, intensity and training frequency to attain optimal recruitment of motor units remain to be demonstrated, it is obvious that overloading is necessary to produce this response.

Allerheiligen: This question will be examined from the standpoint that maximum strength is desired and that strength is not an endurance-type activity. When a motor unit (the motor nerve and the muscle fibers it innervates) is stimulated, all of the muscle fibers of that unit contract maximally. A muscle fiber contracts maximally (100 percent) or not at all: this is the “all or none principle.” If the motor nerve innervates a large number of muscle fibers, then the contraction will be strong. The large muscle groups of the body generally involve many muscle fibers for each motor nerve. A large number of motor units contracting in the quadriceps muscles will result in a large amount of force.

When the frequency of motor unit firing increases, along with the increase in the number of motor units, then the maximum force will be reached more quickly and for a longer duration. When repetitions are performed at submaximal loads, more and more motor units are called upon to complete each repetition. As motor units are fatigued, other motor units are “kicked in” to accommodate for the loss of strength. If a person with a 1 RM of 300 pounds on the bench press performs one set of 10 reps at 135 pounds, not all motor units are activated. However, if this person tries to perform 50 reps with the same weight, motor units will be fatigued, which will result in a loss of maximum force in some motor units. Other motor units will cease to contract because extreme lactic acid build-up will inhibit any contraction.

An interesting question arises concerning intense training and muscle fatigue. During an intense training set, how does a person lose strength?
Roundtable Authors

Bill Allerheiligen is the strength coach for the Houston Oilers professional football team. A charter member of the NSCA, he has published a number of articles in the NSCA Journal. Allerheiligen is the NSCA Region 3 Director and a member of the certification committee.

V. Reggie Edgerton, Ph.D. is professor of kinesiology and a member of The Brain Research Institute at UCLA. He has performed research related to adaptation of the neuromuscular system of laboratory animals and humans for 16 years at UCLA. Edgerton obtained his B.S. from East Carolina University, his M.S. from the University of Iowa and his Ph.D. from Michigan State University.

Bill Hayman has been successfully competing in weight lifting and bodybuilding for nearly 10 years. He received his B.S. in biochemistry from the University of Santa Clara, and is currently working on a Masters in sports nutrition at San Jose State University.

John Kuc operates Kuc’s Fitness Store in Wilkes-Barre, Pennsylvania. He is a four-time world powerlifting champion. Currently, Kuc is involved in powerlifting seminars and exhibitions and active with the American Drug Free Powerlifting Association.

Mike Lambert is publisher and editor-in-chief of Powerlifting U.S.A. He competed up to the national level in powerlifting from 1968 through 1980, and is currently chairing the publicity committee of the United States Powerlifting Federation. His articles and photographs on powerlifting have been widely published.

J.D. MacDougall, Ph.D. is a physiologist at McMaster University in Hamilton, Ontario, Canada, where he is a professor in the School of Physical Education and Athletics and an associate member of the Department of Medicine. His research is directed toward the adaptations of skeletal muscle to physical training. Recently, he and his colleague, Dr. Digby Sale, have focused on those adaptations which occur in response to strength and power training.

Harold S. O’Bryant, Ph.D. is the director of the Kinesiology/Biomechanics Lab in the Department of Health Education, Physical Education and Leisure Studies at Appalachian State University in Boone, North Carolina. He is an NSCA Journal Associate Editor and a member of the NSCA Scientific Committee.

Jimmy Pedemonte is the throwing coach at the University of Genoa, Italy. He is widely recognized as an expert on eastern European throwing methods.

Digby Sale, Ph.D. is an exercise physiologist in the Department of Physical Education at McMaster University in Hamilton, Ontario, Canada. For the past 10 years, he and his colleague, Dr. Duncan MacDougall, have conducted research into the effects of heavy resistance exercise upon neuromuscular function. This work, which has resulted in several publications, is still ongoing.

Per A. Tesch, Ph.D. is presently an associate professor in the Department of Environmental Medicine at the Karolinska Institute, Stockholm, Sweden. Tesch received his Ph.D. in 1980 from the Karolinska Institute with main emphasis areas in muscle and exercise physiology. He is a fellow of the American College of Sports Medicine.

Al Vermeil is currently president of Vermeil’s Sports and Fitness, a company which installs, maintains and develops fitness programs for fire, police and business corporations in the state of California. He holds a B.S. and M.S. in physical education from Kansas State University and Utah State University. Vermeil has previously coached high school, college and professional football. The high point of his coaching career was his part in enabling the San Francisco 49ers to bring home the Super Bowl Trophy in 1982.

Wayne L. Westcott, Ph.D. authored the college textbook Strength Fitness. He is currently involved with the South Shore YMCA in Quincy, Massachusetts, where his responsibilities include strength testing, strength training, strength research and strength consulting with YMCA fitness directors throughout the United States. Westcott received his Ph.D. from Ohio State University and has been Coordinator of Physical Fitness at Pennsylvania State University, Director of Strength Training at Eastern Connecticut State College, and Associate Professor of Physical Education at Florida State University.

During initial contractions, all motor units contracting, followed by fatigue, which decreases strength? Or do 90 percent of the motor units fire and as some motor units fatigue, the other 10 percent assist with the task? The answer to these questions is unclear, but it would appear the latter question is somewhat more accurate. It would also seem likely that at some point the muscle predominantly fatigues as a whole. As in the first example.

Strength training is usually short in duration, ranging from 1 to 10 seconds. We must remember that fast twitch (FT) muscle fibers contract approximately three times faster than slow twitch (ST) muscle fibers. They are, therefore, anaerobic in nature, whereas slow twitch fibers are aerobic in nature. Therefore, our strength training program is anaerobic in nature and develops predominately FT fibers.

The ratio of FT and ST fibers cannot be changed, but how they function can be changed metabolically. Enzymes in FT and ST fibers are similar in facilitation reactions of the ATP-PC system, but enzymes of the FT fibers are about three times more active.

Because a maximal motor unit contraction is a maximal contraction, strength must be increased in other ways. A neuromuscular pattern is developed through strength training. As this pattern is developed, a greater number of motor units may be activated and with a greater frequency.

Along with hypertrophy of the muscle fiber and the improved neuromuscular pattern, strength will be increased. Peak force is greater in FT fibers than in ST fibers but FT fibers fatigue sooner. Rate of fatigue is related to initial strength levels and not to fiber type ratios.

Westcott: The two basic components in strength are the number of motor units recruited and the frequency of motor unit activation. Strength of muscle contraction can be increased by recruiting more motor units, acti-
Table 1: Distribution of fast-twitch fibers among different athletic groups (Stone and O'Bryant. Weight Training: A Scientific Approach. 1985).

<table>
<thead>
<tr>
<th>Group (men)</th>
<th>Approximate average (FG) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marathoners</td>
<td>17.0</td>
</tr>
<tr>
<td>Swimmers</td>
<td>26.0</td>
</tr>
<tr>
<td>Distance runners</td>
<td>31.6</td>
</tr>
<tr>
<td>Speed skaters</td>
<td>31.5</td>
</tr>
<tr>
<td>Orienteers</td>
<td>32.0</td>
</tr>
<tr>
<td>Cross-country</td>
<td>36.0</td>
</tr>
<tr>
<td>Nordic skiers</td>
<td>36.0</td>
</tr>
<tr>
<td>Alpine skiers</td>
<td>36.0</td>
</tr>
<tr>
<td>Ice hockey</td>
<td>39.0</td>
</tr>
<tr>
<td>Race walkers</td>
<td>41.0</td>
</tr>
<tr>
<td>Canoeists</td>
<td>41.0</td>
</tr>
<tr>
<td>Cyclists</td>
<td>44.0</td>
</tr>
<tr>
<td>Bodybuilders</td>
<td>50.0</td>
</tr>
<tr>
<td>Javelin throwers</td>
<td>52.0</td>
</tr>
<tr>
<td>Runners, 800m</td>
<td>52.0</td>
</tr>
<tr>
<td>Downhill skiers</td>
<td>54.0</td>
</tr>
<tr>
<td>Untrained</td>
<td>60.0</td>
</tr>
<tr>
<td>Weight lifters</td>
<td>62.0</td>
</tr>
<tr>
<td>Shot-putters</td>
<td>62.0</td>
</tr>
<tr>
<td>Discus throwers</td>
<td>63.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group (women)</th>
<th>Approximate average (FG) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runners, 800m</td>
<td>39.0</td>
</tr>
<tr>
<td>Cross-country skiers</td>
<td>40.5</td>
</tr>
<tr>
<td>Cyclists</td>
<td>49.0</td>
</tr>
<tr>
<td>Shot-putters</td>
<td>49.0</td>
</tr>
<tr>
<td>Discus throwers</td>
<td>49.0</td>
</tr>
<tr>
<td>Untrained</td>
<td>51.5</td>
</tr>
<tr>
<td>Long & high jumpers</td>
<td>57.5</td>
</tr>
<tr>
<td>Javelin throwers</td>
<td>72.5</td>
</tr>
<tr>
<td>Sprinters</td>
<td></td>
</tr>
</tbody>
</table>

...of power, the muscular cross-section represents an important, but indirect contribution to performance, while the percentage of fast twitch fibers, the degree of their innervation and the degree of synchronization of the activity of motor units is the heart of the matter.

Keeping in mind that strength is a very wide field, going from resistant strength to explosive power (and many other manifestations), I think that, while the muscular hypertrophy can be more or less important, according to the type of strength required by a certain sporting event, the neuromuscular aspect is always of first importance. It will specialize according to the requirements of each sport, and always represents the most direct contribution to high power feats.

Therefore, I believe that the nervous aspect, chiefly played by the motor units, is of fundamental importance in strength. Every movement starts in the central nervous system: the transmission of nervous impulses through the motor units should be amplified (power) or specifically directed (other strength manifestations).

It is very difficult to determine how this aspect can be improved through training. Because we still don't know exactly the mechanisms that govern the number of motor units firing and their frequency, and because the practical applications in sports have been too limited until now. However, as a rule of thumb, the intensity of loads can improve this nervous aspect of strength training.

Edgerton: The number of motor units recruited within a muscle is proportional to the "effort" exerted. If the "effort" level extends beyond the threshold of a given unit, the frequency of firing of that unit will increase beyond the minimal firing frequency. A maximal level will be obtained with a slightly greater effort. For any given motor unit, the relationship of tension to frequency of firing is S-shaped. That is, as the frequency increases, the tension increases slightly up to a...
<table>
<thead>
<tr>
<th>Characteristic:</th>
<th>(FG)</th>
<th>Source (FOG)</th>
<th>(SO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitochondria number</td>
<td>fewer</td>
<td>more</td>
<td>most</td>
</tr>
<tr>
<td>Mitochondria size</td>
<td>small</td>
<td>larger</td>
<td>largest</td>
</tr>
<tr>
<td>Cristae development</td>
<td>less</td>
<td>—</td>
<td>most</td>
</tr>
<tr>
<td>Myofibril size</td>
<td>small</td>
<td>small</td>
<td>large</td>
</tr>
<tr>
<td>Myofibril packing density</td>
<td>small</td>
<td>small</td>
<td>large</td>
</tr>
<tr>
<td>Myofibril X-sectional area</td>
<td>largest</td>
<td>small</td>
<td>smaller</td>
</tr>
<tr>
<td>Hypertrophy response (strength training)</td>
<td>high</td>
<td>lower</td>
<td>lowest</td>
</tr>
<tr>
<td>Sarcoplasmic reticulum</td>
<td>extensive</td>
<td>—</td>
<td>sparse</td>
</tr>
<tr>
<td>Anaerobic:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocity of contraction</td>
<td>highest</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Force of contraction</td>
<td>highest</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Velocity of relaxation</td>
<td>high</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Myosin-ATPase activity</td>
<td>highest</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Glycolytic activity</td>
<td>highest</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Glycogen stores</td>
<td>high</td>
<td>—</td>
<td>high</td>
</tr>
<tr>
<td>Creatine phosphokinase (CPK)</td>
<td>2x more</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Myokinase (MK)</td>
<td>2x more</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ability to resegregate Ca++</td>
<td>high</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Cholinesterase</td>
<td>highest</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Sulphur concentration</td>
<td>high</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Phosphocreatine stores (PC)</td>
<td>high</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Aerobic:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigability</td>
<td>highest</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Endurance low-high</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidative activity</td>
<td>low</td>
<td>high</td>
<td>mod-high</td>
</tr>
<tr>
<td>Capillization</td>
<td>low</td>
<td>mod-high</td>
<td>high</td>
</tr>
<tr>
<td>Myoglobin</td>
<td>low</td>
<td>mod-high</td>
<td>high</td>
</tr>
<tr>
<td>Triglyceride stores</td>
<td>low</td>
<td>—</td>
<td>high</td>
</tr>
<tr>
<td>Succinate dehydrogenase</td>
<td>low</td>
<td>high</td>
<td>highest</td>
</tr>
<tr>
<td>Neurological:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type motor neuron (alpha)</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Action potential</td>
<td>larger</td>
<td>—</td>
<td>smaller</td>
</tr>
<tr>
<td>Neuromuscular junction</td>
<td>large</td>
<td>large</td>
<td>small</td>
</tr>
<tr>
<td>Terminal axon vesicles</td>
<td>complex</td>
<td>simple</td>
<td>simple</td>
</tr>
<tr>
<td>(Ach) to revoke response</td>
<td>high</td>
<td>—</td>
<td>lower</td>
</tr>
<tr>
<td>Subneural folds</td>
<td>conc.</td>
<td>—</td>
<td>conc.</td>
</tr>
<tr>
<td>Motor end-plate area</td>
<td>more</td>
<td>—</td>
<td>less</td>
</tr>
<tr>
<td>Receptors 20%</td>
<td>more</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Terminal axon length</td>
<td>longer</td>
<td>—</td>
<td>shorter</td>
</tr>
<tr>
<td>Mitochondrin in bouton</td>
<td>fewer &</td>
<td>complex</td>
<td>simpler</td>
</tr>
<tr>
<td>Excitatory postsynaptic potential (EPSP)</td>
<td>low</td>
<td>high</td>
<td>highest</td>
</tr>
</tbody>
</table>
nization can be achieved through strength training.

Lambert: Uncoordinated firing of motor units will lead to no useful athletic result. Practice of an athletic event under near maximal loading will develop the necessary synchronicity of motor unit firing and the practice of heavy weight training will likewise produce greater strength output.

Kuc: Synchronous firing of motor units gives a stronger muscular contraction because more motor units fire together, combining their forces in a unit of time, producing a more efficient contraction. More efficient training is needed to make motor units fire in greater sync. Efficient training is characterized by getting the most work done in the smallest unit of time. If there are ten 70 pound dumbbells on the floor and I pick them up one at a time, I've performed 1050 ft pounds of work, presuming the rack is 1 1/2 feet high. It takes me a minute to do this work. Now, if I deadlift a 700 pound barbell, I still did the same amount of work, but it takes only two seconds. All strength building programs should have efficiency as their cornerstone.

Vermeil and Hayman: Synchronous firing of motor units improves strength by enabling more muscle fibers to be recruited and thus develop a larger force resulting in greater strength.

To improve synchronous firing of motor units, two parameters must be considered.

1. The athlete must consciously think speed, quickness and explosiveness during the movements being trained.

2. Movements such as plyometrics must be done because these are the best training methods to improve speed and power, and they provide the athlete with an ideal method to consciously think about getting faster. Plyometrics are best because you do not get a self-induced stretch reflex action.

O'Bryant: The effective force generated by a whole muscle deals with the timing of the stimulus to the various motor units. The "synchronization" or simultaneous firing of large numbers of motor units produces a firing pattern that results in very forceful muscle contractions. Unlike submaximal contractions, the high forces generated during synchronous firing of the motor units may appear jerky. Such movement patterns are likely exhibited by well-trained power lifters at moments of extreme force generation during maximal attempts and is an observational effect of the synchronization phenomenon. High-intensity weight training is thought to produce both facilitory and inhibitory effects on the nervous system to potentiate strength gain (9, 14).

Pedemonte: As early as 1856, E. Weber found that strength is proportional to the muscle's cross-section. After a century of studies, researchers arrived at the conclusion that for the development of strength, the improvement of the nervous mechanism is indispensable (1, 2, 4). These experts found that the degree of the muscular tension can be modified through the influence of the central nervous system.

Keeping in mind that strength shouldn't be considered an isolated contribution to the improvement of sport performances (more strength + more speed + more endurance + more agility, etc. = better performance), but rather, must be associated with the movements that actually represent the complete expression of a given sporting event, one can easily understand the importance of muscular coordination. The more technical the event, the more important muscular coordination.

According to Soviet researchers, we can distinguish two types of muscular coordination: the among-muscles coordination and the intramuscular coordination. While the first is especially trained through technical drills (e.g. gymnastics, diving, ice-skating, etc.), the second is regulated by the synchronous firing of motor units and directly increases strength. According to E.B. Kossowakajia, in the process of developing muscular strength, the fast twitch fibers are the first to be synchronized, and the degree of synchronization is dependent upon the intensity of the loads. With submaximal loads we haven't an effective stimulation on the perfecting of the intermuscular coordination which means synchronization of the activity of muscles.

A different type of synchronization of motor units can also be distinguished according to different types of strength. While speaking of power, we must have a synchronization of the muscular activity connected with a maximal shortening of the highest possible number of fibers at their highest level of contraction. According to V.W. Kusnezow, slow resistant strength is related to the synchronization of the activity of a maximal number of muscular fibers, at their highest level of contraction in connection with an optimal frequency and number of nervous impulses.

Therefore, the synchronization of motor units can be improved by means of high-intensity, fast movements. We are now studying a method of fast weight lifting associated with a contemporaneous electro-stimulation.

Sale: Although increased synchronization of motor unit firing has been observed following strength training (17) it is not clear how this adaptation could increase the force of voluntary contractions. On the contrary, studies with animal muscles have demonstrated that in submaximal contractions in which the frequency of stimulation is low (e.g. 10 to 20 Hz), the force of contraction is considerably greater with asynchronous than with synchronous stimulation. At high frequencies of stimulation, the force produced by synchronous and asynchronous stimulation is similar (15, 23). If synchronization cannot
point, at which a slight increase in frequency produces a large increment in tension. The total strength of a muscle group is the summation of the tension produced by all motor units that are activated.

It is not clear what neuromuscular mechanisms are used to improve strength, but it appears that one can "learn" to optimize activation motor units by perhaps modulating frequency and/or the number of units activated at only one time. There is some evidence that one can increase the probability of two or more units being activated in a synchronous manner. This has been referred to as synchronizing motor unit excitation. It is not clear why, or if this necessarily leads to improved strength.

Kuc: An untrained whole muscle (biceps, for example) is composed of many motor units that do not all fire at once. If more motor units fire simultaneously and with greater frequency, then most of the muscle fibers of a whole muscle would be contracting, producing a stronger contraction.

The body adapts to changes only when necessary. If a muscle is exercised to improve strength, then a reaction to the increased work load will slowly cause more and more motor units to fire with increased frequency. This is a gradual process and is only one of many factors affecting strength increases.

Lambert: The more motor units firing in a coordinated fashion, the greater the strength output. Practice of the specific athletic event involved is obviously the best way to develop the appropriate pattern of motor unit firing. In addition, weight training incorporating heavy weights and low reps should develop additional motor unit firing capacity that can be carried over to enhanced performance in the desired athletic event.

Vermeil and Hayman: During an all-out muscle effort which is to last only seconds or less, as many motor units as possible must fire in order to recruit the maximum number of muscle fibers possible.

The faster a motor unit tires, the better — to a point. A saturation point is reached eventually. At that point, the muscle fiber is literally contracted all of the time due to the high frequency of motor unit firings. However, maximum strength is only maintained for a short period of time, due to fatigue setting in on the muscle fiber, which is contracted nearly all the time because of the saturation of nerve impulse firings.

In an untrained muscle, the number of recruitable fibers for strength is limited: not all will be recruitable. This rarely occurs even in a trained muscle. However, through proper training, a higher percentage of motor units can be recruited. The better the training, the better the recruitment of the fibers. This results in greater strength and explosive strength.

Two methods of training can help increase and improve the condition of more motor units and a higher frequency of firing: traditional adaptation training, such as free weight training; and mental training. Mental training is the area most athletes neglect. The coach should educate the athlete about the muscle group to be trained. This is done through pictures, explanations, etc., so that the athlete has a good knowledge of the muscle to be trained. Next, the athlete must visualize the actual nerve impulses firing to the muscle. The athlete is then taught to picture all this happening, faster and faster. Then the athlete employs this type of thinking during the actual activity.

O'Bryant: A motor unit consists of a motor neuron and all the muscle fibers it innervates. A motor unit, when innervated by a stimulus of at least threshold level, will contract maximally. The strength of a whole muscle can be near maximum when all of its motor units are stimulated (dependent upon pH temperature, etc.). The manner of varying the number of motor units brought into play is called recruitment. Two variables associated with recruitment are the size of the individual muscle fibers and the number of muscle fibers in a single motor unit.

Generally a large cross-sectional mass of contractile tissue will exhibit greater contractile force independent of the number of fibers. The number of fibers within a motor unit varies and may have as many as 500 fibers or as few as 25; therefore, theoretically, if each fiber can produce 5 grams of tension, the tension within a single motor unit can vary from 125 kg to 2.5 kg (7). Force generated by a whole muscle is then a function of the quantity of active tissue brought into play at any one time.

Also, the muscle tension increases as the rate of firing (frequency) increases. This becomes increasingly important as recruitment approaches the maximum number of available motor units, as in the performance of high-intensity force work. It is possible that strength training may allow an increased ability to raise motor neuron excitability during voluntary effort (15). Although the adaptive mechanisms are not clearly understood, a response to "high-intensity" weight resistive training appears to more effectively enhance the voluntary recruitment of higher threshold motor units than other less intense modes of conditioning.

Question 2: Describe the manner in which synchronous firing of motor units improves strength and how this can be improved to increase strength.

Tesch: In addition to the two mechanisms described above, synchronous firing of motor units may increase the force output during contraction. Recent animal and human experiments suggest that increased synchronization occurs after a period of strength training. Because a similar response has been noticed in violinists, overloading does not seem to be the factor causing this adaptation. Nevertheless, it is a challenge for scientists to further study how synchro-
increase the peak force of contraction, perhaps it can increase the rate of force development. However, a study with human muscle indicated that synchronous stimulation of muscle at frequencies as high as 200 Hz failed to match the rate of force development attained with voluntary contraction, in which the activation of the muscle was relatively asynchronous (16). Thus, the contribution of increased motor unit synchronization to strength performance remains unknown.

Allerheiligen: All of the muscle fibers of a motor unit are fired synchronously. The motor nerve may innervate any number of muscle fibers. Large muscles of the body will involve a large number of muscle fibers per motor unit while small muscles of the body will involve a small number of muscle fibers per motor unit. Over 1,000 motor units may be contained within a whole muscle. A small percentage of motor units firing in the quadriceps will yield a contraction of noticeable magnitude.

When a large percentage of the motor units are stimulated synchronously, the resulting contraction is strong. A contraction of this magnitude is very evident in anaerobic activities such as weight lifting and throwing a shot, discus, javelin, hammer or heavy weight. Synchronous firing of a large number of motor units will enable a person to lift heavier weights and the overload principle will be in effect.

Associated with this is the frequency of stimulation of motor units. The number of impulses may vary from five to 80 or 90. If a maximum effort is required then motor units should be synchronous with a maximum number of motor units and the highest number of impulses.

Specificity of training must be kept in mind. If power is desired, then train for power. Development of a neuromuscular pattern is refined when training for power or almost any other skill or activity.

It should be pointed out that while motor units are synchronous in firing, the muscle as a whole is asynchronous in its firing pattern. If this were not true then the entire muscle (pectoralis, deltoids, etc.) would contract at one time. There would be no refined movements. This is the reason behind the graduation of force.

Question 3: What is meant by the motor unit recruitment pattern, what role does this play in strength and how can it be improved?

Westcott: Motor unit recruitment is the key to smooth, forceful and maintained muscle contraction. Each motor unit consists of a motor neuron and a number of muscle fibers (as many as 2000) that contract maximally every time the motor neuron is activated. Because the muscle fibers in a given motor unit are distributed throughout the muscle, only a few motor units need to be activated for coordinated muscle contraction. This arrangement allows individual motor units to alternately fire and rest when work is performed at submaximal strength levels.

For more muscle force, motor units are required to fire simultaneously. High frequency activation of individual motor units produces even greater force by means of tetanic contractions.

High intensity strength training with relatively heavy resistance stimulates maximum motor unit recruitment which produces maximum muscle strength.

Tesch: Motor units can be distinguished by two main categories: slow twitch (ST) and fast twitch (FT) motor units (MU). These two MU-types differ with regard to their activation threshold. The ST-MU is recruited at greater tension levels. Some studies suggest that some FT-MU is increased the greater the force demand. The FT-MU can also be selectively recruited during rapid ballistic movements, irrespective of force level. Motor unit recruitment pattern refers to the involvement of different MU during contraction. The ability to recruit the high-threshold MU is improved through strength training. It is likely that both explosive and resistance training will produce this effect.

Edgerton: Motor unit recruitment simply means the activation of a motor unit. The term "pattern" has been used with a variety of meanings. "Pattern" most often refers to the frequency of electrical impulses that occur within a motor unit when it is excited. The frequency of firing of a motor unit increases with "effort" or level of excitation. The maximum frequency is probably determined by the inherent properties of the motor neuron that innervates the muscle fibers. This maximum level is not likely to be trainable. However, strength could be improved by learning to activate more motor units closer to their maximum level in a more synchronized manner; that is, learn to provide a greater excitation level to a group of the appropriate motor neurons.

O'Bryant: The timing of the contraction of specific patterns of motor units (and whole muscles) is critical to performing strength-power related activities. Research strongly suggests that motor units are recruited in order of size (smallest to largest), and this recruitment is largely a function of the force of muscle contraction (4, 13). Fast motor units are generally the larger motor units, which may be recruited when greater muscular force is needed (10, 12).

Both high force and high speed weight training exercise will recruit fast twitch fibers. Moving one closer toward the force-velocity capacity curve, increasing the power output, and subsequent strength-power training effect (15, 18). The most efficient manner of producing increases in strength-power and speed of movement is through a logical progression and combination of training speeds. This method entails developing a strength base (high force work) before moving to high speed, high power work (20).

Sale: There are at least two aspects
of the motor unit recruitment "pattern" that may be relevant to strength performance and training. One aspect is the relative importance of recruitment and firing rate variation in grading the force of muscle contraction. In two small human muscles which have been investigated, most motor units are recruited at thresholds less than 50 percent of maximum strength (MVC); thereafter, force is increased further almost solely by increasing the firing rate of motor units. In contrast, in two larger more proximal muscles (biceps and deltoid), recruitment of additional motor units occurs throughout the force range up to 100 percent MVC (3, 14, 18). This latter pattern may present a greater challenge to achieving full motor unit activation during voluntary effort, and could provide the scope for the increased motor unit activation that has been observed in strength training experiments.

A second aspect of the recruitment pattern is the order of recruitment of motor units in voluntary contractions. The recruitment order of motor units is rather fixed for a muscle involved in a specific movement, even if the rate of force development or speed of contraction varies over a wide range (4). Motor units are generally recruited in order of size of the neuronal cell bodies. Thus, the smaller slow twitch motor units are recruited before the larger fast twitch motor units.

Further, the results of electromyographic studies do not support the notion of "selective" or "preferential" recruitment of fast twitch motor units in contractions performed at high velocity. If this is the case, to what can be attributed the specificity of velocity that has been observed in strength training experiments (11)? While the pattern of motor unit recruitment may not change in high speed contractions, the pattern of motor unit firing changes markedly in slow versus fast contractions, with the firing rates being much higher in fast contractions (4). Further, there is evidence that the brain organizes the initiation of fast contractions differently than slow contractions (5). Finally, there is recent evidence that there are velocity specific effects of training on the contractile properties of the muscle itself (7).

While the recruitment order of motor units is fixed for a muscle involved in a specific movement, in the case of a change in position (Person, 1974) or in the case of a multifunctional muscle performing different movements (6, 9), recruitment order of some motor units can be altered. Thus, some motor units within a muscle might have a low threshold for one movement and a higher threshold for another movement. The variation in recruitment order according to movements may be partially responsible for the specificity of training that has been observed (24), and may provide a basis for the notion long held by strength trainers that full development of a muscle is only possible when it is exercised in all its possible movements.

Kuc: Motor unit recruitment pattern is bringing into simultaneous function more motor units during a contraction of a whole muscle. The more motor units firing simultaneously, the stronger a muscle contraction will be. More motor units will gradually be brought into play if there is greater demand continuously applied to a muscle than previously encountered.

Progressive resistance exercises, especially with the overload principle, will improve strength. This increased strength is due to increased motor unit recruitment.

Allerheiligen: Motor recruitment can be thought of in four ways: 1) fiber type recruitment (FT or ST; 2) number of motor units recruited; 3) order of recruitment with regard to Type I, IIA, IIB; and 4) frequency of motor unit contraction. A motor unit innervates either all FT fibers or all ST fibers. If the task is endurance (aerobic) in nature the ST motor units are of major importance. If the task is power (anaerobic in nature), the FT motor units are of major importance.

Item 2 is related more to the strength of the contraction. The smaller Class I motor units may be recruited first even though a power activity may be involved. The IIA and then the IIB are next in line for recruitment. In other words, recruitment is from the small to large muscle fibers.

The frequency of motor unit firing ranges from 5 to 90 per second. If a slight or "refined" movement is required, then a small number of impulses are needed. When a powerful movement is required the number of impulses per second are large. The number of impulses is regulated mainly by the muscle spindles which monitor tension (static length, change in length and pressures) on the muscle. Another regulator of the number of impulses is a person's kinesthetic sense. Many a person has experienced a situation where they are ready to lift a heavy weight only to find someone has changed it to a lighter weight. A person getting ready to lift 400 pounds on a leg press gets a big shock when there is only 200 pounds loaded.

In order to develop maximum strength, the highest possible number of FT fibers should be activated. The highest number of motor units must be activated and the greatest frequency of motor units firing must be incorporated. The exercises which would be at the top of the list to meet these requirements are the Olympic style lifts and their supplemental assist exercises. The list of exercises would include:

1. Clean and jerk
2. Snatch
3. Power clean
4. Power snatch
5. Hang clean or snatch
6. High pull
7. Jerk

Several other lifts are also a foundation of many programs which include the bench press, squat, incline, military press and deadlift. Although large amounts of weight may be handled during these exercises they are not thought of as "explosive." As mentioned earlier, an explosive type move will recruit primarily FT fibers.
maximum number of motor units with a high frequency of stimulation. But it must also be noted that a max set of two reps is a very intense activity. In other words, a bench press may recruit FT fibers with a maximum number of motor units and the highest possible frequency of stimulation.

Some of the major concepts of strength training speed of movement are 1) slow concentric and eccentric contractions; 2) fast concentric and eccentric contractions; 3) smooth (neither fast or slow) concentric and eccentric contractions; and 4) isokinetic contractions. While smaller amounts of weight can be used explosively they will not allow for recruitment of a sufficient number of FT fibers (if maximum strength is desired). Isokinetic training will allow for constant speed and accommodating resistance. While performing a movement, maximum effort may be exerted through the full range of motion. When there is a mechanical advantage or disadvantage, isokinetics will accommodate for this with constant speed. It is because of this fact that some coaches feel isokinetic strength training is superior to other training methods.

A ballistic force is created when using a small amount of weight for a very fast contraction as in the bench press. If the lifter relaxed his grip, the bar would fly out of the hands. During such a lift very little work is performed because the hands and arms "follow the bar."

The term "isotonic contraction" is used when speaking of exercise with free weights. When examining the word isotonic we find iso = "same" and tonic = "tension." As a body part goes through its normal range of motion there are gains and losses in mechanical advantage. The tension is not always the same. An arm curl of 100 pounds will never change in weight but it will change mechanically. To clarify this situation the term "dynamic contraction" should be used, meaning a "change in tension."

Vermeil and Hayman: The motor unit recruitment pattern depends upon the type of physical stimulus being placed on that motor unit. The pattern will be one of ST fibers with a few FT fibers when aerobic endurance type activity is done requiring low force output. The situation will be reversed for an activity requiring a high force output. In other words, the nervous system selectively recruits the fibers needed for a particular activity.

By selectively training FT fibers, the motor unit pattern will develop a higher ratio of FT to ST nerve impulse firings which will result in a greater force output and greater strength. The recruitment pattern will differ from individual to individual depending on the genetic makeup of fast and slow twitch fibers in that particular individual.

Question 4: What role does neuromuscular inhibition play in strength, and how can it be altered to improve strength?

Lambert: Neuromuscular inhibition is a self-protective reaction of the human body. The threshold of stress at which the body responds with inhibition appears to be alterable through various training methods, with PNF being the most direct of which I am aware. Partial rep squats, benchs or deadlifts with overload poundages in a power rack seems to also be a means to push back the level at which the body shuts itself down and inhibits muscular contraction. Fred Hatfield often leaps high into the air before attempting a heavy deadlift on the assumption that this will temporarily push back the threshold of neuromuscular inhibition and allow him to exert more force on a maximum strength effort.

Krue: There are proprioceptors in our muscle tendons and joints which inhibit the strength of a muscular contraction if it senses tearing or collapse of a joint. Examples of blocking neuromuscular inhibitors are sometimes seen in life or death situations in the form of extraordinary feats of muscular strength and endurance. Psyching up before an athletic event, especially one involving great strength, is one way to partially override neuromuscular inhibition. A reduction in central nervous system inhibition also comes from devoted participation in proper weight training programs. It is believed that changes take place in the central nervous system as a result of heavy weight training.

Vermeil and Hayman: Neuromuscular inhibition plays the role of slowing an individual's strength gains. An individual usually will have the ability to create enough force needed for the movement, but the lack of neuromuscular coordination and specific movement inexperience will be the limiting factor.

This can be improved by practicing the motion to learn proper technique and overcome the conscious thoughts of not having the specific motion skill. Duplication of the learned motion (after a solid strength foundation has been built) explosively with heavy weights (70 to 95 percent of max) lessens the body's conscious holding back from an all-out effort.

Westcott: A recent research study revealed that previously untrained women increased their 10-repetition performance on a leg extension exercise approximately 60 percent during a four-week training period. However, pre- and post-training assessments on computerized strength testing equipment showed only 10 percent improvement in maximum quadriceps strength. These findings indicated that a large part of the performance improvement was due to factors other than increased muscle strength.

One of these factors may have been a reduction in neuromuscular inhibition as a result of neurological adaptations to the training process. For example, the Golgi tendon mechanism appears to limit muscle force production under conditions of high resistance. Although the exact process is uncertain, regular strength training...
seems to reduce Golgi tendon mechanism sensitivity to muscle stress. This reduces inhibitory stimuli to the motor units, which makes more of the muscle fibers available for force production.

While shouting, hypnosis and fear may also reduce neuromuscular inhibition, the most effective way to accomplish this objective is through regular resistive training with careful attention to proper technique.

O'Bryant: Research has shown that voluntary attempts at maximum concentric force production result in inhibitory responses (15) from "golgi tendon organs" etc., as well as conscious aversion to maximal or near maximal exertion, which can limit force output (3). The degree of inhibition is likely related to skill acquisition. High force training can reduce this inhibition better than purposeful slow, lower force movements (19).

Edgerton: There is some indirect evidence that some type of inhibitory phenomenon operates during very slow velocity movements. This phenomenon seems to be present in elite athletes as well as in untrained individuals. However, it appears that one can improve their force output at a range of velocities with muscle hypertrophy occurring and further, this improvement is influenced by the speed at which the training is executed. Whether this improvement is due to more excitation by the nervous system or less inhibition is unknown.

Sale: Inhibition of reflex or behavioral (e.g., fear of injury) origin may limit full activation of muscles. Special sensory stimuli and hypnosis have been shown to partly overcome this inhibition (10). Repeated maximal efforts in strength training may, by increasing the ability to excite motor neurons, help to overcome inhibition. Two related observations should be of interest to strength trainers. First, conventional strength and power training often involves exercises in which the same muscle groups of both limbs contract simultaneously. It has been observed in these bilateral contractions that the force produced is less than the sum of forces produced by the right and left limbs contracting singly (20, 27), and that this bilateral "deficit" is associated with reduced motor unit activation (21, 28).

Training with bilateral contractions reduces the bilateral deficit (26) and this could be considered a form of neural adaptation to training. Some strength training equipment manufacturers have unwittingly avoided the bilateral deficit problem by producing machines which permit unilateral performances. Depending on the sport, this may or may not be an advantage.

Secondly, the force and motor unit activation of a muscle group in a MVC are increased if the contraction is immediately preceded by a MVC of the antagonists. In the case of isokinetic concentric contractions, this enhancement is most pronounced in the low velocity-high force region of the force-velocity relationship (1). It has been proposed that a tension-dependent, neurally mediated force limiting mechanism provides inhibitory input to agonist motorneurons during MVCs against high resistance (22). The precontraction of antagonists in some way counters the inhibitory influence and allows greater activation of the agonists in their subsequent contraction. A strength training program which employs the precontraction technique is more effective for increasing low velocity strength than a program which consists only of prime mover contractions (Caiozzo et al. 1981b). Some types of training equipment allow the precontraction technique to be used.

Question 5: What is the importance of the different fiber types in strength, and to what degree can this be a limiting factor in strength development?

Pedemonte: As time goes by, we learn more and more about different types of muscular fibers and also learn how important they are in sports.

According to Hungarian biologist M. Nemessuri, fast and slow twitch fibers represent the outermost limits of quite a wide range of muscular fibers. Some sporting events require fast movements, while others need endurance. If on one hand, the athlete who has a great number of fast or slow twitch fibers in his muscles can be favored by this genetic advantage, and, on the other hand, training can help in changing the intermediate types of fibers (not the pure fast and pure slow fibers), training to such an extent may allow great improvements in all sporting events.

Recent studies tend to delineate a sort of "fiber topography" which can be of enormous help for us as coaches. These studies try to give general indications about a "normal" percentage of slow/fast twitch fibers in each single muscle. In other words, they found that each muscle has a different percentage of slow/fast fibers. For instance, the latissimus dorsi has 31 percent of slow fibers, while the rectus femoris has 38 percent and the soleus has 88 percent. Can this aspect be of some benefit for us? I think so, but further studies are still necessary to reveal the practical applications of this knowledge.

Tesch: From a number of studies we know that high-caliber sprinters, throwers, jumpers and weightlifters possess a high percentage of fast twitch (FT) muscle fibers and/or selective hypertrophy of FT fibers. Hence, in these athletes, the cross-sectional area of the muscle occupied by FT contractile proteins is typically greater than in other individuals. Endurance athletes, on the other hand, have a high percentage of slow twitch (ST) fibers. Today, it is generally agreed that the muscle fiber type composition of successful endurance athletes is the result of both inheritance and training adaptation. In power activities such as throwing, jumping, sprinting and Olympic weight lifting, the importance of having a high percentage of FT is related to the superi-
ority of the FT fibers with regard to rate of force development. Thus, individuals with a high percentage of FT are able to produce force at a greater rate. In power lifting, contrary to Olympic weight lifting, where the rate of force development is of little importance in competition, it is less likely that fiber type composition per se is a limiting factor. Yet, high-caliber power lifters exhibit either a high percentage of FT and/or hypertrophied FT fibers. In elite body builders, fiber type composition seems to vary, which suggests that fiber type composition does not limit the capacity to produce muscle hypertrophy. This is surprising, as it is obvious that the FT fiber is more sensitive to hypertrophy than the ST fiber. In other studies of previously non-strength trained individuals, it has been shown that the rate of strength improvement is greatest in individuals having a high FT percentage. Whether this also applies to athletes competing at a high level is not known. Nevertheless, the fact that strength and power, especially at higher contraction speed, is positively correlated with percentage of FT suggests that fiber type composition is an important factor in strength development.

Edgerton: There is contradictory evidence regarding the strength potential of slow and fast muscle fibers at zero velocity (isometric). However, fast muscle definitely has the greater force potential at the higher velocities. The percentage of slow and fast fibers in a muscle is determined almost entirely by genetics. Although there have been claims of converting fibers from fast to slow, and even slow to fast, these changes seem to be of such a small magnitude that they are of questionable physiological significance. At best, one can expect a change by only a few percent. Certainly, few of the improvements realized in training can be accounted for by a change in fiber types.

O'Bryant: Fiber type varies from one person to another with consider-

able differences existing between endurance and strength-power athletes (Table 1). Generally, endurance athletes have higher (SO) percentages while strength-power athletes have higher (FG) percentages. It is known that both the distribution and functional characteristics of fiber types are, to a very large degree, determined genetically. Strength research generally agrees that the quantity of muscle correlates with maximal isometric strength and likewise, a significant positive relationship exists between this value and the proportion of fast twitch muscle fibers (11). More recent evidence suggests that there is both a qualitative as well as a quantitative adaptation of muscle tissue in response to training. Even though fiber distribution, based on myosin ATPase, is still thought to be governed largely by genetic factors, high fast twitch to slow twitch ratios are found in sprinters and jumpers, and appear to be a result of strength training. Similar results have been reported in weight lifters (6).

The type of strength program may also be an important factor. Changes in enzyme activity following sprint strength training have been shown to cause increased creatine phosphokinase (CPK), and myokinase (MK) activity within the muscle (21). Higher demands may also be placed on faster ATP synthesis when rapid maximal contractions are repeated 5 to 8 times with brief rest intervals. Consequently, a high rate of tension development will yield a higher force output. Likewise, a faster intrinsic speed of shortening in FG fibers leads to higher force output for FG fibers at high contraction velocities. As one might expect, the percentage of fast twitch muscle fibers correlates positively with force and speed of contraction.

In addition, muscle fiber composition may be one factor determining the individual shape of the torque-velocity curve. The fast twitch (FG) slow twitch (SO) cross sectional ratio may be more important in determining strength and power than simple percentages. Weight training regimens characterized by more repetitions with smaller intensities affect both fast and slow fiber types, and can be used effectively to enhance local muscle endurance and to stimulate muscle growth, although not necessarily maximizing strength and power. Training programs sometimes used by strength power athletes utilize fewer repetitions with near maximal loads. This higher intensity, lower volume approach stimulates the fast twitch fibers (17) and typically results in faster contraction speeds, hence development of higher power outputs at relative workloads. This ability to produce higher power outputs may be the most important physiological determinant affecting performance, and therefore, success in most major sports.

Likewise, few can argue against the importance of quickness and speed (in general) for most athletic endeavors. Some may confuse "competitive fitness" with general "physical fitness." This issue often leads to much emphasis on endurance. Consequently, many coaches and athletes integrate distance running into their strength conditioning programs as they attempt to enhance "cardiovascular" (CV) endurance. There is substantial evidence to suggest that simultaneous endurance training, utilizing low intensity, long duration work, is counterproductive to strength-power development. This is consistent with other findings which state aerobic training results in adaptations toward oxidatid metabolism at the expense of fast contracting tissues.

A recent study, based largely upon immunohistological data, suggests that there exists a continuum of fiber types, ranging from the slowest to the fastest contracting motor units, and that the contractile profiles and morphological characteristics can be changed by aerobic training to more slow twitch and conversely, by anaerobic training to more fast twitch fibers (2). Qualitative examination of skeletal muscle of endurance trained individuals reveals an ultrastructure rep
sentative of aerobic metabolism with a well-developed mitochondrial network and greater cristae surface area for oxidative enzyme storage. On the other hand, weight lifters’ muscle show an adaptation of the tissues ultrastructure involving an extensive sarcoplasmic reticulum, which is a benefit toward faster and more efficient Ca++ transport during the production of power. Table 2 lists three major muscle fiber types and a summary of their respective characteristics.

MacDougall: Nomenclature for the different fiber types varies, but in our lab we consider there to be three principal types in humans: Type I or slow twitch oxidative fibers, Type IIa or fast twitch oxidative fibers and Type IIb or fast twitch glycolytic fibers. The Type II fibers have larger cross-sectional areas than Type I fibers, possess slightly more contractile protein per cross-sectional area (1) and undergo greater hypertrophy with strength training (6). Thus, although all fiber types are recruited during a maximal voluntary contraction, it would be advantageous for the individual seeking maximal strength (or size) development to possess a high percentage of Type II fibers, and especially Type IIb fibers.

Although recent evidence indicates that it may be possible to increase the proportion of Type I fibers by endurance training (4), conventional strength training does not appear to have the opposite effect; that is, to increase the proportion of Type II fibers. This conclusion is based on our findings that bicep and tricep muscles of elite bodybuilders have the same percentage of Type I and Type II fibers as untrained subjects, despite the fact that such individuals may have trained intensively for 8 to 10 years (7). It thus appears that the potential for developing maximal size or strength in a given muscle is, to a certain extent, genetically limited by the fiber type composition of that muscle.

Moreover, because the Type II fibers also develop force more rapidly than the Type I fibers, it is not surprising that there is a high correlation between the percent Type II fibers and strength measured at high velocities (2). Thus, in power sports such as sprinting, jumping and throwing, the athlete with a high proportion of Type II fibers will also have an advantage.

Lambert: The muscle fiber type distribution an athlete possesses may be a very strong determinant of success in athletic activities. Roger Estep, a world record-breaking powerlifter who handles 800 pounds in competition style squats, was one of the first athletes to participate in a muscle biopsy program at Ohio State. The study found that not only did Roger have fast twitch fibers, which are supposed to produce explosive power, but his were four times the size of both the control group and the marathon runners that were tested. Just as Roger’s muscle fiber type distribution may have predetermined his excellence in the domain of powerlifting, another athlete’s distribution may lead him to great success as a cross country runner.

Westcott: Slow twitch muscle fibers bear the major burden in activities that require submaximal muscle contraction. These fibers are better suited for aerobic energy utilization because they contain more mitochondria, more endurance enzymes, more blood capillaries and more intracellular fat. The slow twitch fibers are able to produce low force contractions for a relatively long period of time. Elite distance runners may have up to 75 percent slow twitch fibers in their leg muscles.

Fast twitch muscle fibers bear the major burden in activities that require maximal muscle contraction. These fibers are better suited for anaerobic energy utilization because they have more myosin ATPase activity and more enzymes for anaerobic breakdown of glycogen and glucose. The fast twitch fibers are able to produce high force contractions for a relatively short period of time. Olympic sprinters and jumpers may have up to 75 percent fast twitch fibers in their leg muscles.

Research indicates that both muscle fiber types are actively recruited during maximal muscular contraction regardless of the movement speed. Research also shows that endurance training facilitates aerobic energy utilization in both slow twitch fibers and fast twitch fibers. However, there is no evidence that slow twitch fibers can be turned into fast twitch fibers or vice-versa, since this would require changing the entire nerve innervation network.

Because strength events depend on anaerobic energy production, the person who is genetically endowed with a high percentage of fast twitch muscle fibers is likely to be more successful than the person who has a low percentage of fast twitch muscle fibers.

Vermeil and Hayman: A higher fast twitch to slow twitch muscle fiber ratio means a potentially greater force output and thus greater strength. If an athlete has a high slow twitch to fast twitch ratio, this will limit the ability to develop a great amount of force.

Kuc: There are two muscle fiber types. Red, or slow twitch fibers, are used for aerobic activities such as endurance, long distance running. White, or fast twitch fibers, are used in anaerobic activities such as weight lifting, sprinting and explosive movements. Strength training causes an increase in size and capacities of each fiber type, but cannot change a red fiber to a white fiber. Individual differences in percentage composition of red and white fibers in any given muscle are largely a matter of genetics. Everyone can increase their strength through weight training, but in the end, the person endowed with more white fibers will be the strongest.

Allerheiligen: Ratios of fast twitch (FT) fibers to slow twitch (ST) fibers are inherited and cannot be changed. It can be reasoned from this that a person with a high number of FT fibers

will tend to be more powerful. One study showed that a marathon runner and a sprinter had the same ratio of FT to ST fibers. Evidently, some other factors were involved such as metabolic changes, motivation superior training techniques and mechanical differences. Most marathoners and sprinters have a certain range of fiber composition. Marathoners may have a range of 50 to 95 percent ST fibers but an average of 80 percent ST fibers. Sprinters may have a range of 50 to 80 percent FT fibers but an average of 65 percent ST fibers.

It is not advisable to predict what position or sport a person should participate in from such tests as muscle biopsy or vertical jump. I would like to share one individual case, which may be far from reliable and valid, but it does follow the results of some research. I once had a linebacker who wanted to get into great shape and ran long slow distance all summer. When he was tested in the 1.5 mile run he had a great time, but his vertical jump dropped 5 inches. In other words, as a result of his training he lost explosiveness.

An athlete has a range on certain physical tests. For example, let’s look at the vertical jump. If an athlete is given the world’s worst program for power development, a 24-inch jump might be achieved. If this same athlete is given the world’s greatest program for power development, a 34-inch jump might result. For this example we will say he has a 50-50 ratio of FT-ST fibers. Now, when the coach first tests this athlete and the athlete has been on the bad program, the coach will think this guy is terrible. But if the athlete were tested with a good program, the coach would think he is great. So, does the athlete have potential or not?

Anaerobic training will develop the anaerobic capabilities of both ST and FT fibers. Aerobic training will develop the aerobic capabilities of both ST and FT fibers. Remember that specificity of training will help design your program. Some training (sports) is 50 percent anaerobic and 50 percent aerobic. A person in this sport would be very transitional but would probably not excel in endurance or sprint/power activities. This is the predictable outcome, but it’s not definite.

MacDougall References

Sale References

