Flexibility is the range of motion of a joint. It is somewhat genetically determined but can be increased and refined through proper stretching exercises. The terms flexibility and stretching are often used synonymously. However, an athlete can be flexible without stretching and conversely, an athlete can stretch without gaining flexibility.

Every sport has its own particular requirements for flexibility. Some sports, such as gymnastics and figure skating, require extensive flexibility for successful participation. Other sports require more specific flexibility. For example, swimmers need shoulder flexibility and track hurdlers need hip flexibility.

Some athletes are successful in spite of flexibility problems. However, adequate flexibility permits better technique -- which should lead to better performance.

In the past, medical practitioners tested athletes and classified them as flexible or non-flexible. These classifications were based on the theory that flexible athletes were prone to ligament injuries since their joints were hypermobile or loose. Non-flexible athletes were prone to muscle injuries since their muscles absorbed forces not dissipated through joint range of motion.

Later studies did not support this relationship. Additionally, more sensitive tests found athletes could have a flexible upper body but not lower or vice versa, so an athlete may be flexible in some areas and not in others.

STRUCTURES LIMITING FLEXIBILITY

Flexibility is determined by the bony construction of a joint and the soft tissues around the joint. Soft tissues include ligaments, joint capsules, tendons, muscles crossing the joint, subcutaneous fat, and skin overlying the joint.

Certain joints permit more motion because of their construction. Ball and socket joints, like the shoulder and hip, permit the most motion. Hinge joints, such as the fingers, permit motion only in one direction. Some joints, like the radio-ulnar joint at the elbow, pivot one bone on another. The small joints between the spinal vertebrae permit small sliding-type motions individually, though several joints may combine to produce larger motions.

The joint capsule and ligaments support and permit motion determined by a joint's anatomical construction. They also oppose abnormal motion. If the joint capsule or ligaments are damaged by an Injury, either may limit motion. Conversely, a torn joint capsule or ligament may permit too much motion or motion in inappropriate directions.
Tendons and muscles crossing a joint also limit its range of motion. If the muscles and tendons are tight, joint motion is limited. This tightness is alleviated through stretching.

If the skin over a joint has been injured, it may lose its elastic properties and not stretch. For example, a scar from a burn may not stretch as the joint moves, limiting motion.

If a person is overweight (not usually a problem with athletes), motion may be limited by two body parts running into each other. For example, hip motion may be limited by a large abdomen hitting the thighs rather than hamstring muscle tightness.

TYPES OF STRETCHING

Three types of stretching are commonly used.

1. **Ballistic stretching** uses a bouncing motion to increase joint range of motion. While an argument may be made that sports are ballistic in nature and stretching should be similar for specificity of training, ballistic stretching causes a protective muscular reflex, the stretch reflex, to fire and shorten the muscle while it is being stretched. Since the athlete is trying to lengthen the muscle while the stretch reflex is contracting it, there is an increased chance of injury while stretching ballistically.

2. **Static stretching** uses a slow, controlled lengthening force applied to the muscle. A muscle is gradually put under tension until a comfortable stretching sensation is felt in the muscle. This position is held for 30-60 seconds. As the stretching sensation diminishes, tension is increased to re-establish the original sensation. The stretch and hold pattern is repeated 1-3 times for maximum results.

3. **Contract-relax stretching** uses neuromuscular reflexes to stretch more effectively. A muscle is first contracted isometrically, without joint motion, for 3-5 seconds then stretched in a manner similar to static stretching. The contract-relax-stretch pattern is repeated several times. This stretching usually requires a partner to apply the resistance and stretch.

These types of stretching all increase joint range of motion. Some are easier than others. Some take more time. Some have a lesser risk of injury. All must be done in a controlled manner. If a stretching sensation is felt anywhere other than in a muscle or tendon, the position is wrong and needs to be re-evaluated. Stretching should increase the length of muscles and tendons and not stress joints or ligaments.

© 1992 United States Olympic Committee, Sports Medicine Division
Flexibility is the range of motion of a joint. It is somewhat genetically determined but can be increased and refined through proper stretching exercises. The terms flexibility and stretching are often used synonymously. However, an athlete can be flexible without stretching and conversely, an athlete can stretch without gaining flexibility.

Every sport has its own particular requirements for flexibility. Some sports, such as gymnastics and figure skating, require extensive flexibility for successful participation. Other sports require more specific flexibility. For example, swimmers need shoulder flexibility and track hurdlers need hip flexibility.

Some athletes are successful in spite of flexibility problems. However, adequate flexibility permits better technique -- which should lead to better performance!

In the past, medical practitioners tested athletes and classified them as flexible or non-flexible. These classifications were based on the theory that flexible athletes were prone to ligament injuries since their joints were hypermobile or loose. Non-flexible athletes were prone to muscle injuries since their muscles absorbed forces not dissipated through joint range of motion.

Later studies did not support this relationship. Additionally, more sensitive tests found athletes could have a flexible upper body but not lower or vice versa, so an athlete may be flexible in some areas and not in others.

STRUCTURES LIMITING FLEXIBILITY

Flexibility is determined by the bony construction of a joint and the soft tissues around the joint. Soft tissues include ligaments, joint capsules, tendons, muscles crossing the joint, subcutaneous fat, and skin overlying the joint.

Certain joints permit more motion because of their construction. Ball and socket joints, like the shoulder and hip, permit the most motion. Hinge joints, such as the fingers, permit motion only in one direction. Some joints, like the radio-ulnar joint at the elbow, pivot one bone on another. The small joints between the spinal vertebrae permit small sliding-type motions individually, though several joints may combine to produce larger motions.

The joint capsule and ligaments support and permit motion determined by a joint’s anatomical construction. They also oppose abnormal motion. If the joint capsule or ligaments are damaged by an injury, either may limit motion. Conversely, a torn joint capsule or ligament may permit too much motion or motion in inappropriate directions.
Tendons and muscles crossing a joint also limit its range of motion. If the muscles and tendons are tight, joint motion is limited. This tightness is alleviated through stretching.

If the skin over a joint has been injured, it may lose its elastic properties and not stretch. For example, a scar from a burn may not stretch as the joint moves, limiting motion.

If a person is overweight (not usually a problem with athletes), motion may be limited by two body parts running into each other. For example, hip motion may be limited by a large abdomen hitting the thighs rather than hamstring muscle tightness.

TYPES OF STRETCHING

Three types of stretching are commonly used.

1. **Ballistic stretching** uses a bouncing motion to increase joint range of motion. While an argument may be made that sports are ballistic in nature and stretching should be similar for specificity of training, ballistic stretching causes a protective muscular reflex, the stretch reflex, to fire and shorten the muscle while it is being stretched. Since the athlete is trying to lengthen the muscle while the stretch reflex is contracting it, there is an increased chance of injury while stretching ballistically.

2. **Static stretching** uses a slow, controlled lengthening force applied to the muscle. A muscle is gradually put under tension until a comfortable stretching sensation is felt in the muscle. This position is held for 30-60 seconds. As the stretching sensation diminishes, tension is increased to re-establish the original sensation. The stretch and hold pattern is repeated 1-3 times for maximum results.

3. **Contract-relax stretching** uses neuromuscular reflexes to stretch more effectively. A muscle is first contracted isometrically, without joint motion, for 3-5 seconds then stretched in a manner similar to static stretching. The contract-relax-stretch pattern is repeated several times. This stretching usually requires a partner to apply the resistance and stretch.

These types of stretching all increase joint range of motion. Some are easier than others. Some take more time. Some have a lesser risk of injury. All must be done in a controlled manner. If a stretching sensation is felt anywhere other than in a muscle or tendon, the position is wrong and needs to be re-evaluated. Stretching should increase the length of muscles and tendons and not stress joints or ligaments.
FLEXIBILITY

Flexibility is the range of motion of a joint. It is somewhat genetically determined but can be increased and refined through proper stretching exercises. The terms flexibility and stretching are often used synonymously. However, an athlete can be flexible without stretching and conversely, an athlete can stretch without gaining flexibility.

Every sport has its own particular requirements for flexibility. Some sports, such as gymnastics and figure skating, require extensive flexibility for successful participation. Other sports require more specific flexibility. For example, swimmers need shoulder flexibility and track hurdlers need hip flexibility.

Some athletes are successful in spite of flexibility problems. However, adequate flexibility permits better technique -- which should lead to better performance.

In the past, medical practitioners tested athletes and classified them as flexible or non-flexible. These classifications were based on the theory that flexible athletes were prone to ligament injuries since their joints were hypermobile or loose. Non-flexible athletes were prone to muscle injuries since their muscles absorbed forces not dissipated through joint range of motion.

Later studies did not support this relationship. Additionally, more sensitive tests found athletes could have a flexible upper body but not lower or vice versa, so an athlete may be flexible in some areas and not in others.

STRUCTURES LIMITING FLEXIBILITY

Flexibility is determined by the bony construction of a joint and the soft tissues around the joint. Soft tissues include ligaments, joint capsules, tendons, muscles crossing the joint, subcutaneous fat, and skin overlying the joint.

Certain joints permit more motion because of their construction. Ball and socket joints, like the shoulder and hip, permit the most motion. Hinge joints, such as the fingers, permit motion only in one direction. Some joints, like the radio-ulnar joint at the elbow, pivot one bone on another. The small joints between the spinal vertebrae permit small sliding-type motions individually, though several joints may combine to produce larger motions.

The joint capsule and ligaments support and permit motion determined by a joint's anatomical construction. They also oppose abnormal motion. If the joint capsule or ligaments are damaged by an injury, either may limit motion. Conversely, a torn joint capsule or ligament may permit too much motion or motion in inappropriate directions.
Tendons and muscles crossing a joint also limit its range of motion. If the muscles and tendons are tight, joint motion is limited. This tightness is alleviated through stretching.

If the skin over a joint has been injured, it may lose its elastic properties and not stretch. For example, a scar from a burn may not stretch as the joint moves, limiting motion.

If a person is overweight (not usually a problem with athletes), motion may be limited by two body parts running into each other. For example, hip motion may be limited by a large abdomen hitting the thighs rather than hamstring muscle tightness.

TYPES OF STRETCHING

Three types of stretching are commonly used.

1. **Ballistic stretching** uses a bouncing motion to increase joint range of motion. While an argument may be made that sports are ballistic in nature and stretching should be similar for specificity of training, ballistic stretching causes a protective muscular reflex, the stretch reflex, to fire and shorten the muscle while it is being stretched. Since the athlete is trying to lengthen the muscle while the stretch reflex is contracting it, there is an increased chance of injury while stretching ballistically.

2. **Static stretching** uses a slow, controlled lengthening force applied to the muscle. A muscle is gradually put under tension until a comfortable stretching sensation is felt in the muscle. This position is held for 30-60 seconds. As the stretching sensation diminishes, tension is increased to re-establish the original sensation. The stretch and hold pattern is repeated 1-3 times for maximum results.

3. **Contract-relax stretching** uses neuromuscular reflexes to stretch more effectively. A muscle is first contracted isometrically, without joint motion, for 3-5 seconds then stretched in a manner similar to static stretching. The contract-relax-stretch pattern is repeated several times. This stretching usually requires a partner to apply the resistance and stretch.

These types of stretching all increase joint range of motion. Some are easier than others. Some take more time. Some have a lesser risk of injury. All must be done in a controlled manner. If a stretching sensation is felt anywhere other than in a muscle or tendon, the position is wrong and needs to be re-evaluated. Stretching should increase the length of muscles and tendons and not stress joints or ligaments.
Flexibility is the range of motion of a joint. It is somewhat genetically determined but can be increased and refined through proper stretching exercises. The terms flexibility and stretching are often used synonymously. However, an athlete can be flexible without stretching and conversely, an athlete can stretch without gaining flexibility.

Every sport has its own particular requirements for flexibility. Some sports, such as gymnastics and figure skating, require extensive flexibility for successful participation. Other sports require more specific flexibility. For example, swimmers need shoulder flexibility and track hurdlers need hip flexibility.

Some athletes are successful in spite of flexibility problems. However, adequate flexibility permits better technique -- which should lead to better performance.

In the past, medical practitioners tested athletes and classified them as flexible or non-flexible. These classifications were based on the theory that flexible athletes were prone to ligament injuries since their joints were hypermobile or loose. Non-flexible athletes were prone to muscle injuries since their muscles absorbed forces not dissipated through joint range of motion.

Later studies did not support this relationship. Additionally, more sensitive tests found athletes could have a flexible upper body but not lower or vice versa, so an athlete may be flexible in some areas and not in others.

STRUCTURES LIMITING FLEXIBILITY

Flexibility is determined by the bony construction of a joint and the soft tissues around the joint. Soft tissues include ligaments, joint capsules, tendons, muscles crossing the joint, subcutaneous fat, and skin overlying the joint.

Certain joints permit more motion because of their construction. Ball and socket joints, like the shoulder and hip, permit the most motion. Hinge joints, such as the fingers, permit motion only in one direction. Some joints, like the radio-ulnar joint at the elbow, pivot one bone on another. The small joints between the spinal vertebrae permit small sliding-type motions individually, though several joints may combine to produce larger motions.

The joint capsule and ligaments support and permit motion determined by a joint's anatomical construction. They also oppose abnormal motion. If the joint capsule or ligaments are damaged by an injury, either may limit motion. Conversely, a torn joint capsule or ligament may permit too much motion or motion in inappropriate directions.
Tendons and muscles crossing a joint also limit its range of motion. If the muscles and tendons are tight, joint motion is limited. This tightness is alleviated through stretching.

If the skin over a joint has been injured, it may lose its elastic properties and not stretch. For example, a scar from a burn may not stretch as the joint moves, limiting motion.

If a person is overweight (not usually a problem with athletes), motion may be limited by two body parts running into each other. For example, hip motion may be limited by a large abdomen hitting the thighs rather than hamstring muscle tightness.

TYPES OF STRETCHING

Three types of stretching are commonly used.

1. **Ballistic stretching** uses a bouncing motion to increase joint range of motion. While an argument may be made that sports are ballistic in nature and stretching should be similar for specificity of training, ballistic stretching causes a protective muscular reflex, the stretch reflex, to fire and shorten the muscle while it is being stretched. Since the athlete is trying to lengthen the muscle while the stretch reflex is contracting it, there is an increased chance of injury while stretching ballistically.

2. **Static stretching** uses a slow, controlled lengthening force applied to the muscle. A muscle is gradually put under tension until a comfortable stretching sensation is felt in the muscle. This position is held for 30-60 seconds. As the stretching sensation diminishes, tension is increased to re-establish the original sensation. The stretch and hold pattern is repeated 1-3 times for maximum results.

3. **Contract-relax stretching** uses neuromuscular reflexes to stretch more effectively. A muscle is first contracted isometrically, without joint motion, for 3-5 seconds then stretched in a manner similar to static stretching. The contract-relax-stretch pattern is repeated several times. This stretching usually requires a partner to apply the resistance and stretch.

These types of stretching all increase joint range of motion. Some are easier than others. Some take more time. Some have a lesser risk of injury. All must be done in a controlled manner. If a stretching sensation is felt anywhere other than in a muscle or tendon, the position is wrong and needs to be re-evaluated. Stretching should increase the length of muscles and tendons and not stress joints or ligaments.

© 1992 United States Olympic Committee, Sports Medicine Division
Flexibility is the range of motion of a joint. It is somewhat genetically determined but can be increased and refined through proper stretching exercises. The terms flexibility and stretching are often used synonymously. However, an athlete can be flexible without stretching and conversely, an athlete can stretch without gaining flexibility.

Every sport has its own particular requirements for flexibility. Some sports, such as gymnastics and figure skating, require extensive flexibility for successful participation. Other sports require more specific flexibility. For example, swimmers need shoulder flexibility and track hurdlers need hip flexibility.

Some athletes are successful in spite of flexibility problems. However, adequate flexibility permits better technique -- which should lead to better performance.

In the past, medical practitioners tested athletes and classified them as flexible or non-flexible. These classifications were based on the theory that flexible athletes were prone to ligament injuries since their joints were hypermobile or loose. Non-flexible athletes were prone to muscle injuries since their muscles absorbed forces not dissipated through joint range of motion.

Later studies did not support this relationship. Additionally, more sensitive tests found athletes could have a flexible upper body but not lower or vice versa, so an athlete may be flexible in some areas and not in others.

STRUCTURES LIMITING FLEXIBILITY

Flexibility is determined by the bony construction of a joint and the soft tissues around the joint. Soft tissues include ligaments, joint capsules, tendons, muscles crossing the joint, subcutaneous fat, and skin overlying the joint.

Certain joints permit more motion because of their construction. Ball and socket joints, like the shoulder and hip, permit the most motion. Hinge joints, such as the fingers, permit motion only in one direction. Some joints, like the radio-ulnar joint at the elbow, pivot one bone on another. The small joints between the spinal vertebrae permit small sliding-type motions individually, though several joints may combine to produce larger motions.

The joint capsule and ligaments support and permit motion determined by a joint's anatomical construction. They also oppose abnormal motion. If the joint capsule or ligaments are damaged by an injury, either may limit motion. Conversely, a torn joint capsule or ligament may permit too much motion or motion in inappropriate directions.
Tendons and muscles crossing a joint also limit its range of motion. If the muscles and tendons are tight, joint motion is limited. This tightness is alleviated through stretching.

If the skin over a joint has been injured, it may lose its elastic properties and not stretch. For example, a scar from a burn may not stretch as the joint moves, limiting motion.

If a person is overweight (not usually a problem with athletes), motion may be limited by two body parts running into each other. For example, hip motion may be limited by a large abdomen hitting the thighs rather than hamstring muscle tightness.

TYPES OF STRETCHING

Three types of stretching are commonly used.

1. **Ballistic stretching** uses a bouncing motion to increase joint range of motion. While an argument may be made that sports are ballistic in nature and stretching should be similar for specificity of training, ballistic stretching causes a protective muscular reflex, the stretch reflex, to fire and shorten the muscle while it is being stretched. Since the athlete is trying to lengthen the muscle while the stretch reflex is contracting it, there is an increased chance of injury while stretching ballistically.

2. **Static stretching** uses a slow, controlled lengthening force applied to the muscle. A muscle is gradually put under tension until a comfortable stretching sensation is felt in the muscle. This position is held for 30-60 seconds. As the stretching sensation diminishes, tension is increased to re-establish the original sensation. The stretch and hold pattern is repeated 1-3 times for maximum results.

3. **Contract-relax stretching** uses neuromuscular reflexes to stretch more effectively. A muscle is first contracted isometrically, without joint motion, for 3-5 seconds then stretched in a manner similar to static stretching. The contract-relax-stretch pattern is repeated several times. This stretching usually requires a partner to apply the resistance and stretch.

These types of stretching all increase joint range of motion. Some are easier than others. Some take more time. Some have a lesser risk of injury. All must be done in a controlled manner. If a stretching sensation is felt anywhere other than in a muscle or tendon, the position is wrong and needs to be re-evaluated. Stretching should increase the length of muscles and tendons and not stress joints or ligaments.
Flexibility is the range of motion of a joint. It is somewhat genetically determined but can be increased and refined through proper stretching exercises. The terms flexibility and stretching are often used synonymously. However, an athlete can be flexible without stretching and conversely, an athlete can stretch without gaining flexibility.

Every sport has its own particular requirements for flexibility. Some sports, such as gymnastics and figure skating, require extensive flexibility for successful participation. Other sports require more specific flexibility. For example, swimmers need shoulder flexibility and track hurdlers need hip flexibility.

Some athletes are successful in spite of flexibility problems. However, adequate flexibility permits better technique -- which should lead to better performance!

In the past, medical practitioners tested athletes and classified them as flexible or non-flexible. These classifications were based on the theory that flexible athletes were prone to ligament injuries since their joints were hypermobile or loose. Non-flexible athletes were prone to muscle injuries since their muscles absorbed forces not dissipated through joint range of motion.

Later studies did not support this relationship. Additionally, more sensitive tests found athletes could have a flexible upper body but not lower or vice versa, so an athlete may be flexible in some areas and not in others.

STRUCTURES LIMITING FLEXIBILITY

Flexibility is determined by the bony construction of a joint and the soft tissues around the joint. Soft tissues include ligaments, joint capsules, tendons, muscles crossing the joint, subcutaneous fat, and skin overlying the joint.

Certain joints permit more motion because of their construction. Ball and socket joints, like the shoulder and hip, permit the most motion. Hinge joints, such as the fingers, permit motion only in one direction. Some joints, like the radio-ulnar joint at the elbow, pivot one bone on another. The small joints between the spinal vertebrae permit small sliding-type motions individually, though several joints may combine to produce larger motions.

The joint capsule and ligaments support and permit motion determined by a joint's anatomical construction. They also oppose abnormal motion. If the joint capsule or ligaments are damaged by an injury, either may limit motion. Conversely, a torn joint capsule or ligament may permit too much motion or motion in inappropriate directions.
Tendons and muscles crossing a joint also limit its range of motion. If the muscles and tendons are tight, joint motion is limited. This tightness is alleviated through stretching.

If the skin over a joint has been injured, it may lose its elastic properties and not stretch. For example, a scar from a burn may not stretch as the joint moves, limiting motion.

If a person is overweight (not usually a problem with athletes), motion may be limited by two body parts running into each other. For example, hip motion may be limited by a large abdomen hitting the thighs rather than hamstring muscle tightness.

TYPES OF STRETCHING

Three types of stretching are commonly used.

1. **Ballistic stretching** uses a bouncing motion to increase joint range of motion. While an argument may be made that sports are ballistic in nature and stretching should be similar for specificity of training, ballistic stretching causes a protective muscular reflex, the stretch reflex, to fire and shorten the muscle while it is being stretched. Since the athlete is trying to lengthen the muscle while the stretch reflex is contracting it, there is an increased chance of injury while stretching ballistically.

2. **Static stretching** uses a slow, controlled lengthening force applied to the muscle. A muscle is gradually put under tension until a comfortable stretching sensation is felt in the muscle. This position is held for 30-60 seconds. As the stretching sensation diminishes, tension is increased to re-establish the original sensation. The stretch and hold pattern is repeated 1-3 times for maximum results.

3. **Contract-relax stretching** uses neuromuscular reflexes to stretch more effectively. A muscle is first contracted isometrically, without joint motion, for 3-5 seconds then stretched in a manner similar to static stretching. The contract-relax-stretch pattern is repeated several times. This stretching usually requires a partner to apply the resistance and stretch.

These types of stretching all increase joint range of motion. Some are easier than others. Some take more time. Some have a lesser risk of injury. All must be done in a controlled manner. If a stretching sensation is felt anywhere other than in a muscle or tendon, the position is wrong and needs to be re-evaluated. Stretching should increase the length of muscles and tendons and not stress joints or ligaments.

© 1992 United States Olympic Committee, Sports Medicine Division
Flexibility is the range of motion of a joint. It is somewhat genetically determined but can be increased and refined through proper stretching exercises. The terms flexibility and stretching are often used synonymously. However, an athlete can be flexible without stretching and conversely, an athlete can stretch without gaining flexibility.

Every sport has its own particular requirements for flexibility. Some sports, such as gymnastics and figure skating, require extensive flexibility for successful participation. Other sports require more specific flexibility. For example, swimmers need shoulder flexibility and track hurdlers need hip flexibility.

Some athletes are successful in spite of flexibility problems. However, adequate flexibility permits better technique -- which should lead to better performance.

In the past, medical practitioners tested athletes and classified them as flexible or non-flexible. These classifications were based on the theory that flexible athletes were prone to ligament injuries since their joints were hypermobile or loose. Non-flexible athletes were prone to muscle injuries since their muscles absorbed forces not dissipated through joint range of motion.

Later studies did not support this relationship. Additionally, more sensitive tests found athletes could have a flexible upper body but not lower or vice versa, so an athlete may be flexible in some areas and not in others.

STRUCTURES LIMITING FLEXIBILITY

Flexibility is determined by the bony construction of a joint and the soft tissues around the joint. Soft tissues include ligaments, joint capsules, tendons, muscles crossing the joint, subcutaneous fat, and skin overlying the joint.

Certain joints permit more motion because of their construction. Ball and socket joints, like the shoulder and hip, permit the most motion. Hinge joints, such as the fingers, permit motion only in one direction. Some joints, like the radio-ulnar joint at the elbow, pivot one bone on another. The small joints between the spinal vertebrae permit small sliding-type motions individually, though several joints may combine to produce larger motions.

The joint capsule and ligaments support and permit motion determined by a joint's anatomical construction. They also oppose abnormal motion. If the joint capsule or ligaments are damaged by an injury, either may limit motion. Conversely, a torn joint capsule or ligament may permit too much motion or motion in inappropriate directions.
Tendons and muscles crossing a joint also limit its range of motion. If the muscles and tendons are tight, joint motion is limited. This tightness is alleviated through stretching.

If the skin over a joint has been injured, it may lose its elastic properties and not stretch. For example, a scar from a burn may not stretch as the joint moves, limiting motion.

If a person is overweight (not usually a problem with athletes), motion may be limited by two body parts running into each other. For example, hip motion may be limited by a large abdomen hitting the thighs rather than hamstring muscle tightness.

TYPES OF STRETCHING

Three types of stretching are commonly used.

1. **Ballistic stretching** uses a bouncing motion to increase joint range of motion. While an argument may be made that sports are ballistic in nature and stretching should be similar for specificity of training, ballistic stretching causes a protective muscular reflex, the stretch reflex, to fire and shorten the muscle while it is being stretched. Since the athlete is trying to lengthen the muscle while the stretch reflex is contracting it, there is an increased chance of injury while stretching ballistically.

2. **Static stretching** uses a slow, controlled lengthening force applied to the muscle. A muscle is gradually put under tension until a comfortable stretching sensation is felt in the muscle. This position is held for 30-60 seconds. As the stretching sensation diminishes, tension is increased to re-establish the original sensation. The stretch and hold pattern is repeated 1-3 times for maximum results.

3. **Contract-relax stretching** uses neuromuscular reflexes to stretch more effectively. A muscle is first contracted isometrically, without joint motion, for 3-5 seconds then stretched in a manner similar to static stretching. The contract-relax-stretch pattern is repeated several times. This stretching usually requires a partner to apply the resistance and stretch.

These types of stretching all increase joint range of motion. Some are easier than others. Some take more time. Some have a lesser risk of injury. All must be done in a controlled manner. If a stretching sensation is felt anywhere other than in a muscle or tendon, the position is wrong and needs to be re-evaluated. Stretching should increase the length of muscles and tendons and not stress joints or ligaments.
Flexibility is the range of motion of a joint. It is somewhat genetically determined but can be increased and refined through proper stretching exercises. The terms flexibility and stretching are often used synonymously. However, an athlete can be flexible without stretching and conversely, an athlete can stretch without gaining flexibility.

Every sport has its own particular requirements for flexibility. Some sports, such as gymnastics and figure skating, require extensive flexibility for successful participation. Other sports require more specific flexibility. For example, swimmers need shoulder flexibility and track hurdlers need hip flexibility.

Some athletes are successful in spite of flexibility problems. However, adequate flexibility permits better technique -- which should lead to better performance.

In the past, medical practitioners tested athletes and classified them as flexible or non-flexible. These classifications were based on the theory that flexible athletes were prone to ligament injuries since their joints were hypermobile or loose. Non-flexible athletes were prone to muscle injuries since their muscles absorbed forces not dissipated through joint range of motion.

Later studies did not support this relationship. Additionally, more sensitive tests found athletes could have a flexible upper body but not lower or vice versa, so an athlete may be flexible in some areas and not in others.

STRUCTURES LIMITING FLEXIBILITY

Flexibility is determined by the bony construction of a joint and the soft tissues around the joint. Soft tissues include ligaments, joint capsules, tendons, muscles crossing the joint, subcutaneous fat, and skin overlying the joint.

Certain joints permit more motion because of their construction. Ball and socket joints, like the shoulder and hip, permit the most motion. Hinge joints, such as the fingers, permit motion only in one direction. Some joints, like the radio-ulnar joint at the elbow, pivot one bone on another. The small joints between the spinal vertebrae permit small sliding-type motions individually, though several joints may combine to produce larger motions.

The joint capsule and ligaments support and permit motion determined by a joint's anatomical construction. They also oppose abnormal motion. If the joint capsule or ligaments are damaged by an injury, either may limit motion. Conversely, a torn joint capsule or ligament may permit too much motion or motion in inappropriate directions.
Tendons and muscles crossing a joint also limit its range of motion. If the muscles and tendons are tight, joint motion is limited. This tightness is alleviated through stretching.

If the skin over a joint has been injured, it may lose its elastic properties and not stretch. For example, a scar from a burn may not stretch as the joint moves, limiting motion.

If a person is overweight (not usually a problem with athletes), motion may be limited by two body parts running into each other. For example, hip motion may be limited by a large abdomen hitting the thighs rather than hamstring muscle tightness.

TYPES OF STRETCHING

Three types of stretching are commonly used.

1. **Ballistic stretching** uses a bouncing motion to increase joint range of motion. While an argument may be made that sports are ballistic in nature and stretching should be similar for specificity of training, ballistic stretching causes a protective muscular reflex, the stretch reflex, to fire and shorten the muscle while it is being stretched. Since the athlete is trying to lengthen the muscle while the stretch reflex is contracting it, there is an increased chance of injury while stretching ballistically.

2. **Static stretching** uses a slow, controlled lengthening force applied to the muscle. A muscle is gradually put under tension until a comfortable stretching sensation is felt in the muscle. This position is held for 30-60 seconds. As the stretching sensation diminishes, tension is increased to re-establish the original sensation. The stretch and hold pattern is repeated 1-3 times for maximum results.

3. **Contract-relax stretching** uses neuromuscular reflexes to stretch more effectively. A muscle is first contracted isometrically, without joint motion, for 3-5 seconds then stretched in a manner similar to static stretching. The contract-relax-stretch pattern is repeated several times. This stretching usually requires a partner to apply the resistance and stretch.

These types of stretching all increase joint range of motion. Some are easier than others. Some take more time. Some have a lesser risk of injury. All must be done in a controlled manner. If a stretching sensation is felt anywhere other than in a muscle or tendon, the position is wrong and needs to be re-evaluated. Stretching should increase the length of muscles and tendons and not stress joints or ligaments.

© 1992 United States Olympic Committee, Sports Medicine Division
Flexibility is the range of motion of a joint. It is somewhat genetically determined but can be increased and refined through proper stretching exercises. The terms flexibility and stretching are often used synonymously. However, an athlete can be flexible without stretching and conversely, an athlete can stretch without gaining flexibility.

Every sport has its own particular requirements for flexibility. Some sports, such as gymnastics and figure skating, require extensive flexibility for successful participation. Other sports require more specific flexibility. For example, swimmers need shoulder flexibility and track hurdlers need hip flexibility.

Some athletes are successful in spite of flexibility problems. However, adequate flexibility permits better technique -- which should lead to better performance.

In the past, medical practitioners tested athletes and classified them as flexible or non-flexible. These classifications were based on the theory that flexible athletes were prone to ligament injuries since their joints were hypermobile or loose. Non-flexible athletes were prone to muscle injuries since their muscles absorbed forces not dissipated through joint range of motion.

Later studies did not support this relationship. Additionally, more sensitive tests found athletes could have a flexible upper body but not lower or vice versa, so an athlete may be flexible in some areas and not in others.

STRUCTURES LIMITING FLEXIBILITY

Flexibility is determined by the bony construction of a joint and the soft tissues around the joint. Soft tissues include ligaments, joint capsules, tendons, muscles crossing the joint, subcutaneous fat, and skin overlying the joint.

Certain joints permit more motion because of their construction. Ball and socket joints, like the shoulder and hip, permit the most motion. Hinge joints, such as the fingers, permit motion only in one direction. Some joints, like the radio-ulnar joint at the elbow, pivot one bone on another. The small joints between the spinal vertebrae permit small sliding-type motions individually, though several joints may combine to produce larger motions.

The joint capsule and ligaments support and permit motion determined by a joint's anatomical construction. They also oppose abnormal motion. If the joint capsule or ligaments are damaged by an injury, either may limit motion. Conversely, a torn joint capsule or ligament may permit too much motion or motion in inappropriate directions.
Tendons and muscles crossing a joint also limit its range of motion. If the muscles and tendons are tight, joint motion is limited. This tightness is alleviated through stretching.

If the skin over a joint has been injured, it may lose its elastic properties and not stretch. For example, a scar from a burn may not stretch as the joint moves, limiting motion.

If a person is overweight (not usually a problem with athletes), motion may be limited by two body parts running into each other. For example, hip motion may be limited by a large abdomen hitting the thighs rather than hamstring muscle tightness.

TYPES OF STRETCHING

Three types of stretching are commonly used.

1. **Ballistic stretching** uses a bouncing motion to increase joint range of motion. While an argument may be made that sports are ballistic in nature and stretching should be similar for specificity of training, ballistic stretching causes a protective muscular reflex, the stretch reflex, to fire and shorten the muscle while it is being stretched. Since the athlete is trying to lengthen the muscle while the stretch reflex is contracting it, there is an increased chance of injury while stretching ballistically.

2. **Static stretching** uses a slow, controlled lengthening force applied to the muscle. A muscle is gradually put under tension until a comfortable stretching sensation is felt in the muscle. This position is held for 30-60 seconds. As the stretching sensation diminishes, tension is increased to re-establish the original sensation. The stretch and hold pattern is repeated 1-3 times for maximum results.

3. **Contract-relax stretching** uses neuromuscular reflexes to stretch more effectively. A muscle is first contracted isometrically, without joint motion, for 3-5 seconds then stretched in a manner similar to static stretching. The contract-relax-stretch pattern is repeated several times. This stretching usually requires a partner to apply the resistance and stretch.

These types of stretching all increase joint range of motion. Some are easier than others. Some take more time. Some have a lesser risk of injury. All must be done in a controlled manner. If a stretching sensation is felt anywhere other than in a muscle or tendon, the position is wrong and needs to be re-evaluated. Stretching should increase the length of muscles and tendons and not stress joints or ligaments.
Flexibility is the range of motion of a joint. It is somewhat genetically determined but can be increased and refined through proper stretching exercises. The terms flexibility and stretching are often used synonymously. However, an athlete can be flexible without stretching and conversely, an athlete can stretch without gaining flexibility.

Every sport has its own particular requirements for flexibility. Some sports, such as gymnastics and figure skating, require extensive flexibility for successful participation. Other sports require more specific flexibility. For example, swimmers need shoulder flexibility and track hurdlers need hip flexibility.

Some athletes are successful in spite of flexibility problems. However, adequate flexibility permits better technique -- which should lead to better performance.

In the past, medical practitioners tested athletes and classified them as flexible or non-flexible. These classifications were based on the theory that flexible athletes were prone to ligament injuries since their joints were hypermobile or loose. Non-flexible athletes were prone to muscle injuries since their muscles absorbed forces not dissipated through joint range of motion.

Later studies did not support this relationship. Additionally, more sensitive tests found athletes could have a flexible upper body but not lower or vice versa, so an athlete may be flexible in some areas and not in others.

STRUCTURES LIMITING FLEXIBILITY

Flexibility is determined by the bony construction of a joint and the soft tissues around the joint. Soft tissues include ligaments, joint capsules, tendons, muscles crossing the joint, subcutaneous fat, and skin overlying the joint.

Certain joints permit more motion because of their construction. Ball and socket joints, like the shoulder and hip, permit the most motion. Hinge joints, such as the fingers, permit motion only in one direction. Some joints, like the radio-ulnar joint at the elbow, pivot one bone on another. The small joints between the spinal vertebrae permit small sliding-type motions individually, though several joints may combine to produce larger motions.

The joint capsule and ligaments support and permit motion determined by a joint's anatomical construction. They also oppose abnormal motion. If the joint capsule or ligaments are damaged by an injury, either may limit motion. Conversely, a torn joint capsule or ligament may permit too much motion or motion in inappropriate directions.
Tendons and muscles crossing a joint also limit its range of motion. If the muscles and tendons are tight, joint motion is limited. This tightness is alleviated through stretching.

If the skin over a joint has been injured, it may lose its elastic properties and not stretch. For example, a scar from a burn may not stretch as the joint moves, limiting motion.

If a person is overweight (not usually a problem with athletes), motion may be limited by two body parts running into each other. For example, hip motion may be limited by a large abdomen hitting the thighs rather than hamstring muscle tightness.

TYPES OF STRETCHING

Three types of stretching are commonly used.

1. **Ballistic stretching** uses a bouncing motion to increase joint range of motion. While an argument may be made that sports are ballistic in nature and stretching should be similar for specificity of training, ballistic stretching causes a protective muscular reflex, the stretch reflex, to fire and shorten the muscle while it is being stretched. Since the athlete is trying to lengthen the muscle while the stretch reflex is contracting it, there is an increased chance of injury while stretching ballistically.

2. **Static stretching** uses a slow, controlled lengthening force applied to the muscle. A muscle is gradually put under tension until a comfortable stretching sensation is felt in the muscle. This position is held for 30-60 seconds. As the stretching sensation diminishes, tension is increased to re-establish the original sensation. The stretch and hold pattern is repeated 1-3 times for maximum results.

3. **Contract-relax stretching** uses neuromuscular reflexes to stretch more effectively. A muscle is first contracted isometrically, without joint motion, for 3-5 seconds then stretched in a manner similar to static stretching. The contract-relax-stretch pattern is repeated several times. This stretching usually requires a partner to apply the resistance and stretch.

These types of stretching all increase joint range of motion. Some are easier than others. Some take more time. Some have a lesser risk of injury. All must be done in a controlled manner. If a stretching sensation is felt anywhere other than in a muscle or tendon, the position is wrong and needs to be re-evaluated. Stretching should increase the length of muscles and tendons and not stress joints or ligaments.

© 1992 United States Olympic Committee, Sports Medicine Division
Flexibility is the range of motion of a joint. It is somewhat genetically determined but can be increased and refined through proper stretching exercises. The terms flexibility and stretching are often used synonymously. However, an athlete can be flexible without stretching and conversely, an athlete can stretch without gaining flexibility.

Every sport has its own particular requirements for flexibility. Some sports, such as gymnastics and figure skating, require extensive flexibility for successful participation. Other sports require more specific flexibility. For example, swimmers need shoulder flexibility and track hurdlers need hip flexibility.

Some athletes are successful in spite of flexibility problems. However, adequate flexibility permits better technique -- which should lead to better performance.

In the past, medical practitioners tested athletes and classified them as flexible or non-flexible. These classifications were based on the theory that flexible athletes were prone to ligament injuries since their joints were hypermobile or loose. Non-flexible athletes were prone to muscle injuries since their muscles absorbed forces not dissipated through joint range of motion.

Later studies did not support this relationship. Additionally, more sensitive tests found athletes could have a flexible upper body but not lower or vice versa, so an athlete may be flexible in some areas and not in others.

STRUCTURES LIMITING FLEXIBILITY

Flexibility is determined by the bony construction of a joint and the soft tissues around the joint. Soft tissues include ligaments, joint capsules, tendons, muscles crossing the joint, subcutaneous fat, and skin overlying the joint.

Certain joints permit more motion because of their construction. Ball and socket joints, like the shoulder and hip, permit the most motion. Hinge joints, such as the fingers, permit motion only in one direction. Some joints, like the radio-ulnar joint at the elbow, pivot one bone on another. The small joints between the spinal vertebrae permit small sliding-type motions individually, though several joints may combine to produce larger motions.

The joint capsule and ligaments support and permit motion determined by a joint's anatomical construction. They also oppose abnormal motion. If the joint capsule or ligaments are damaged by an injury, either may limit motion. Conversely, a torn joint capsule or ligament may permit too much motion or motion in inappropriate directions.
Tendons and muscles crossing a joint also limit its range of motion. If the muscles and tendons are tight, joint motion is limited. This tightness is alleviated through stretching.

If the skin over a joint has been injured, it may lose its elastic properties and not stretch. For example, a scar from a burn may not stretch as the joint moves, limiting motion.

If a person is overweight (not usually a problem with athletes), motion may be limited by two body parts running into each other. For example, hip motion may be limited by a large abdomen hitting the thighs rather than hamstring muscle tightness.

TYPES OF STRETCHING

Three types of stretching are commonly used.

1. **Ballistic stretching** uses a bouncing motion to increase joint range of motion. While an argument may be made that sports are ballistic in nature and stretching should be similar for specificity of training, ballistic stretching causes a protective muscular reflex, the stretch reflex, to fire and shorten the muscle while it is being stretched. Since the athlete is trying to lengthen the muscle while the stretch reflex is contracting it, there is an increased chance of injury while stretching ballistically.

2. **Static stretching** uses a slow, controlled lengthening force applied to the muscle. A muscle is gradually put under tension until a comfortable stretching sensation is felt in the muscle. This position is held for 30-60 seconds. As the stretching sensation diminishes, tension is increased to re-establish the original sensation. The stretch and hold pattern is repeated 1-3 times for maximum results.

3. **Contract-relax stretching** uses neuromuscular reflexes to stretch more effectively. A muscle is first contracted isometrically, without joint motion, for 3-5 seconds then stretched in a manner similar to static stretching. The contract-relax-stretch pattern is repeated several times. This stretching usually requires a partner to apply the resistance and stretch.

These types of stretching all increase joint range of motion. Some are easier than others. Some take more time. Some have a lesser risk of injury. All must be done in a controlled manner. If a stretching sensation is felt anywhere other than in a muscle or tendon, the position is wrong and needs to be re-evaluated. Stretching should increase the length of muscles and tendons and not stress joints or ligaments.
Flexibility is the range of motion of a joint. It is somewhat genetically determined but can be increased and refined through proper stretching exercises. The terms flexibility and stretching are often used synonymously. However, an athlete can be flexible without stretching and conversely, an athlete can stretch without gaining flexibility.

Every sport has its own particular requirements for flexibility. Some sports, such as gymnastics and figure skating, require extensive flexibility for successful participation. Other sports require more specific flexibility. For example, swimmers need shoulder flexibility and track hurdlers need hip flexibility.

Some athletes are successful in spite of flexibility problems. However, adequate flexibility permits better technique -- which should lead to better performance.

In the past, medical practitioners tested athletes and classified them as flexible or non-flexible. These classifications were based on the theory that flexible athletes were prone to ligament injuries since their joints were hypermobile or loose. Non-flexible athletes were prone to muscle injuries since their muscles absorbed forces not dissipated through joint range of motion.

Later studies did not support this relationship. Additionally, more sensitive tests found athletes could have a flexible upper body but not lower or vice versa, so an athlete may be flexible in some areas and not in others.

STRUCTURES LIMITING FLEXIBILITY

Flexibility is determined by the bony construction of a joint and the soft tissues around the joint. Soft tissues include ligaments, joint capsules, tendons, muscles crossing the joint, subcutaneous fat, and skin overlying the joint.

Certain joints permit more motion because of their construction. Ball and socket joints, like the shoulder and hip, permit the most motion. Hinge joints, such as the fingers, permit motion only in one direction. Some joints, like the radio-ulnar joint at the elbow, pivot one bone on another. The small joints between the spinal vertebrae permit small sliding-type motions individually, though several joints may combine to produce larger motions.

The joint capsule and ligaments support and permit motion determined by a joint’s anatomical construction. They also oppose abnormal motion. If the joint capsule or ligaments are damaged by an injury, either may limit motion. Conversely, a torn joint capsule or ligament may permit too much motion or motion in inappropriate directions.
Tendons and muscles crossing a joint also limit its range of motion. If the muscles and tendons are tight, joint motion is limited. This tightness is alleviated through stretching.

If the skin over a joint has been injured, it may lose its elastic properties and not stretch. For example, a scar from a burn may not stretch as the joint moves, limiting motion.

If a person is overweight (not usually a problem with athletes), motion may be limited by two body parts running into each other. For example, hip motion may be limited by a large abdomen hitting the thighs rather than hamstring muscle tightness.

TYPES OF STRETCHING

Three types of stretching are commonly used.

1. **Ballistic stretching** uses a bouncing motion to increase joint range of motion. While an argument may be made that sports are ballistic in nature and stretching should be similar for specificity of training, ballistic stretching causes a protective muscular reflex, the stretch reflex, to fire and shorten the muscle while it is being stretched. Since the athlete is trying to lengthen the muscle while the stretch reflex is contracting it, there is an increased chance of injury while stretching ballistically.

2. **Static stretching** uses a slow, controlled lengthening force applied to the muscle. A muscle is gradually put under tension until a comfortable stretching sensation is felt in the muscle. This position is held for 30-60 seconds. As the stretching sensation diminishes, tension is increased to re-establish the original sensation. The stretch and hold pattern is repeated 1-3 times for maximum results.

3. **Contract-relax stretching** uses neuromuscular reflexes to stretch more effectively. A muscle is first contracted isometrically, without joint motion, for 3-5 seconds then stretched in a manner similar to static stretching. The contract-relax-stretch pattern is repeated several times. This stretching usually requires a partner to apply the resistance and stretch.

These types of stretching all increase joint range of motion. Some are easier than others. Some take more time. Some have a lesser risk of injury. All must be done in a controlled manner. If a stretching sensation is felt anywhere other than in a muscle or tendon, the position is wrong and needs to be re-evaluated. Stretching should increase the length of muscles and tendons and not stress joints or ligaments.
Flexibility is the range of motion of a joint. It is somewhat genetically determined but can be increased and refined through proper stretching exercises. The terms flexibility and stretching are often used synonymously. However, an athlete can be flexible without stretching and conversely, an athlete can stretch without gaining flexibility.

Every sport has its own particular requirements for flexibility. Some sports, such as gymnastics and figure skating, require extensive flexibility for successful participation. Other sports require more specific flexibility. For example, swimmers need shoulder flexibility and track hurdlers need hip flexibility.

Some athletes are successful in spite of flexibility problems. However, adequate flexibility permits better technique -- which should lead to better performance.

In the past, medical practitioners tested athletes and classified them as flexible or non-flexible. These classifications were based on the theory that flexible athletes were prone to ligament injuries since their joints were hypermobile or loose. Non-flexible athletes were prone to muscle injuries since their muscles absorbed forces not dissipated through joint range of motion.

Later studies did not support this relationship. Additionally, more sensitive tests found athletes could have a flexible upper body but not lower or vice versa, so an athlete may be flexible in some areas and not in others.

STRUCTURES LIMITING FLEXIBILITY

Flexibility is determined by the bony construction of a joint and the soft tissues around the joint. Soft tissues include ligaments, joint capsules, tendons, muscles crossing the joint, subcutaneous fat, and skin overlying the joint.

Certain joints permit more motion because of their construction. Ball and socket joints, like the shoulder and hip, permit the most motion. Hinge joints, such as the fingers, permit motion only in one direction. Some joints, like the radio-ulnar joint at the elbow, pivot one bone on another. The small joints between the spinal vertebrae permit small sliding-type motions individually, though several joints may combine to produce larger motions.

The joint capsule and ligaments support and permit motion determined by a joint's anatomical construction. They also oppose abnormal motion. If the joint capsule or ligaments are damaged by an injury, either may limit motion. Conversely, a torn joint capsule or ligament may permit too much motion or motion in inappropriate directions.
Tendons and muscles crossing a joint also limit its range of motion. If the muscles and tendons are tight, joint motion is limited. This tightness is alleviated through stretching.

If the skin over a joint has been injured, it may lose its elastic properties and not stretch. For example, a scar from a burn may not stretch as the joint moves, limiting motion.

If a person is overweight (not usually a problem with athletes), motion may be limited by two body parts running into each other. For example, hip motion may be limited by a large abdomen hitting the thighs rather than hamstring muscle tightness.

TYPES OF STRETCHING

Three types of stretching are commonly used.

1. **Ballistic stretching** uses a bouncing motion to increase joint range of motion. While an argument may be made that sports are ballistic in nature and stretching should be similar for specificity of training, ballistic stretching causes a protective muscular reflex, the stretch reflex, to fire and shorten the muscle while it is being stretched. Since the athlete is trying to lengthen the muscle while the stretch reflex is contracting it, there is an increased chance of injury while stretching ballistically.

2. **Static stretching** uses a slow, controlled lengthening force applied to the muscle. A muscle is gradually put under tension until a comfortable stretching sensation is felt in the muscle. This position is held for 30-60 seconds. As the stretching sensation diminishes, tension is increased to re-establish the original sensation. The stretch and hold pattern is repeated 1-3 times for maximum results.

3. **Contract-relax stretching** uses neuromuscular reflexes to stretch more effectively. A muscle is first contracted isometrically, without joint motion, for 3-5 seconds then stretched in a manner similar to static stretching. The contract-relax-stretch pattern is repeated several times. This stretching usually requires a partner to apply the resistance and stretch.

These types of stretching all increase joint range of motion. Some are easier than others. Some take more time. Some have a lesser risk of injury. All must be done in a controlled manner. If a stretching sensation is felt anywhere other than in a muscle or tendon, the position is wrong and needs to be re-evaluated. Stretching should increase the length of muscles and tendons and not stress joints or ligaments.

© 1992 United States Olympic Committee, Sports Medicine Division